1952年,贝尔实验室(Bell Labs)制造一台6英尺高自动数字识别机“Audrey”,它可以识别数字0~9的发音,且准确度高达90%以上。并且它对熟人的精准度高,而对陌生人则偏低。
1956年,普林斯顿大学RCA实验室开发了单音节词识别系统,能够识别特定人的十个单音节词中所包含的不同音节。
1959年,MIT的林肯实验室开发了针对十个元音的非特定人语音识别系统。
二十世纪六十年代初,东京无线电实验室、京都大学和NEC实验室在语音识别领域取得了开拓性的进展,各自先后制作了能够进行语音识别的专用硬件。
1964年的世界博览会上,IBM向世人展示了数字语音识别的“shoe box recognizer”。
二十世纪七十年代,语音识别的研究取得了突破性的进展,研究重心仍然是孤立词语语音识别。
1971年,美国国防部研究所(Darpa)赞助了五年期限的语音理解研究项目,希望将识别的单词量提升到1000以上。参与该项目的公司和学术机构包括IBM、卡内基梅隆大学(CMU)、斯坦福研究院。就这样,Harpy在CMU诞生了。不像之前的识别器,Harpy可以识别整句话。
二十世纪八十年代,NEC提出了二阶动态规划算法,Bell实验室提出了分层构造算法,以及帧同步分层构造算法等。同时,连接词和大词汇量连续语音的识别得到了较大发展,统计模型逐步取代模板匹配的方法,隐马尔科夫模型(HMM)成为语音识别系统的基础模型。
八十年代中期,IBM创造了一个语音控制的打字机—Tangora,能够处理大约20000单词。IBM的研究就是基于隐形马尔科夫链模型(hidden Markov model),在信号处理技术中加入统计信息。这种方法使得在给定音素情况下,很有可能预测下一个因素。
1984年,IBM发布的语音识别系统在5000个词汇量级上达到了95%的识别率。
1985年AT&T贝尔实验室建造了第一个智能麦克风系统,用来研究大室内空间的声源位置追踪问题。
1987年开始,国家开始执行963计划后,国家863智能计算机主题专家组为语音识别研究立项,每两年一次。
1987年12月,李开复开发出世界上第一个“非特定人连续语音识别系统”。